\qquad

Quiz 3

Question 1. (12 pts)
Determine if the given subset is a subspace of the corresponding vector space. (Show work!).
(a) (4 pts) The subset of \mathbb{R}^{3} :

$$
W=\left\{v \in \mathbb{R}^{3} \mid v \cdot(1,2,3)=0\right\}
$$

Solution: Yes, W is a subspace. I leave it to you to verify the conditions.
(b) (4 pts) Let $\mathcal{M}_{n \times n}$ be the vector space of all real $n \times n$ matrices.

$$
W=\left\{A \in \mathcal{M}_{n \times n} \mid A^{T}=A\right\}
$$

Solution: Yes, W is a subspace. I leave it to you to verify the conditions.
(c) (4 pts) Let $P_{n}(t)$ be the vector space of all polynomials with degree $\leq n$.

$$
W=\left\{p \in P_{n}(t) \mid p(1)=2\right\}
$$

Solution: Notice that the zero polynomial is not in W. So W is not a subspace.

Question 2. (8 pts)

Let $u_{1}=(1,1,1), u_{2}=(1,2,3)$ and $u_{3}=(1,5,8)$ in \mathbb{R}^{3}. Determine whether $v=(3,0,1)$ is a linear combination of $\left\{u_{1}, u_{2}, u_{3}\right\}$.

Solution: need to solve the linear system

$$
\left[\begin{array}{lll|l}
1 & 1 & 1 & 3 \\
1 & 2 & 5 & 0 \\
1 & 3 & 8 & 1
\end{array}\right]
$$

Use Gaussian elimination and we get

$$
\left[\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
0 & 1 & 4 & -3 \\
0 & 0 & 1 & -4
\end{array}\right]
$$

So $\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]=\left[\begin{array}{c}-6 \\ -3 \\ 4\end{array}\right]$ is a solution. So v is a linear combination of $\left\{u_{1}, u_{2}, u_{3}\right\}$.

